109 學年度 大學入學學力測驗數學試題

俞克斌老師編寫

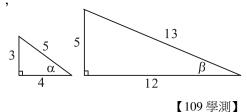
第賣部分:選擇題(佔65分)

-、單選題(佔35分)

1. 已知兩個直角三角形三邊長分別為3,4,5、5,12,13, α , β 分別為它們的一角,如圖所示,

試選出正確的選項:

- $(1) \sin \alpha > \sin \beta > \sin 30^{\circ}$ $(2) \sin \alpha > \sin 30^{\circ} > \sin \beta$
- $(3) \sin \beta > \sin \alpha > \sin 30^{\circ}$ $(4) \sin \beta > \sin 30^{\circ} > \sin \alpha$
- $(5) \sin 30^{\circ} > \sin \alpha > \sin \beta$



答:(2)

- $|\mathbf{F}|: \frac{3}{5} > \frac{1}{2} > \frac{5}{13} \Rightarrow \sin \alpha > \sin 30^{\circ} > \sin \beta$
- 2. 空間中有相異四點A,B,C,D,已知內積 $\overrightarrow{AB}\cdot\overrightarrow{AC}=\overrightarrow{AB}\cdot\overrightarrow{AD}$,試選出正確的選項。
 - (1) $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$ (2) $\overrightarrow{AC} = \overrightarrow{AD}$ (3) \overrightarrow{AB} 與 \overrightarrow{CD} 平行 (4) $\overrightarrow{AD} \cdot \overrightarrow{BC} = 0$
 - (5)A,B,C,D四點在同一平面上。

【109 學測】

- $|\widetilde{P}|$: (1) $|\overline{AB}| \cdot |\overline{AC}| |\overline{AB}| \cdot |\overline{AD}| = |\overline{AB}| \cdot (|\overline{DC}|) = 0 \Rightarrow |\overline{AB}| \perp |\overline{CD}|$
- 3. 如圖所示,O為正六邊形之中心,試問下列哪個向量的 終點P落在 ΔODE 內部(不含邊界)?

$$(1) \ \overrightarrow{OP} = \overrightarrow{OC} + \overrightarrow{OE}$$

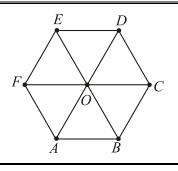
(1)
$$\overrightarrow{OP} = \overrightarrow{OC} + \overrightarrow{OE}$$
 (2) $\overrightarrow{OP} = \frac{1}{4} \overrightarrow{OC} + \frac{1}{2} \overrightarrow{OE}$

(3)
$$\overrightarrow{OP} = -\frac{1}{4} \overrightarrow{OC} + \frac{1}{2} \overrightarrow{OE}$$
 (4) $\overrightarrow{OP} = \frac{1}{4} \overrightarrow{OC} - \frac{1}{2} \overrightarrow{OE}$

(4)
$$\overrightarrow{OP} = \frac{1}{4} \overrightarrow{OC} - \frac{1}{2} \overrightarrow{OE}$$

(5)
$$\overrightarrow{OP} = -\frac{1}{4} \overrightarrow{OC} - \frac{1}{2} \overrightarrow{OE} \circ$$

【109 學測】



- $\overline{\mathbf{m}}$: 線性組合,以 \overline{OC} 、 \overline{OE} 為基底, ΔODE 內部隸屬「廣義第一象限」
- 4. $\Leftrightarrow I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$, $B = I + A + A^{-1}$, 試選出代表 BA 的選項:

$$(1)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad (2)\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} \quad (3)\begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} \quad (4)\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \quad (5)\begin{bmatrix} 6 & 6 \\ 18 & 24 \end{bmatrix}$$
 【109 學測】

$$\overrightarrow{B} : B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$

$$BA = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 18 & 24 \end{bmatrix}$$

【109 學測】

答:(3)

6. 連續投擲一公正骰子兩次,設出現的點數依序為
$$a \cdot b$$
。

試問發生 $\log(a^2)$ + $\log b$ >1的機率為多少?

$$(1)\frac{1}{3}$$
 $(2)\frac{1}{2}$ $(3)\frac{2}{3}$ $(4)\frac{3}{4}$ $(5)\frac{5}{6}$ °

【109 學測】

答: (4)

解:
$$\log a^2 + \log b > 1 \Rightarrow \log a^2 b > \log 10 \Rightarrow a^2 b > 10$$

$$\frac{a \mid 2 \mid 3 \mid 4 \mid 5 \mid 6}{b \mid 3 \sim 6 \mid 2 \sim 6 \mid 1 \sim 6 \mid 1 \sim 6 \mid 1 \sim 6}$$
 機率: $\frac{4 + 5 + 6 \times 3}{6^2} = \frac{3}{4}$

- 7. 坐標平面上,函數圖形 $y = -\sqrt{3}x^3$ 上有兩點 $P \cdot Q$ 到原點距離皆為 $1 \cdot C$ 已知點 P 坐標為 $(\cos\theta, \sin\theta)$,試問點 Q 坐標為何?
 - $(1)(\cos(-\theta),\sin(-\theta))$ $(2)(-\cos\theta,\sin\theta)$ $(3)(\cos(-\theta),-\sin\theta)$
 - $(4)(-\cos\theta,\sin(-\theta))$ $(5)(\cos\theta,-\sin\theta)$ \circ

【109 學測】

答: (4)

解:
$$y = -\sqrt{3}x^3$$
 為奇函數,關於 $(0,0)$ 成對稱 故 $(\cos\theta,\sin\theta)$ 關於 $(0,0)$ 的對稱點 $(-\cos\theta,-\sin\theta) = (-\cos\theta,\sin(-\theta))$

二、多選題(佔30分)

- 8. 有一個遊戲的規則如下: 丟三顆公正骰子,若所得的點數恰滿足下列(A)或(B)兩個條件 之一,可得到獎金100元;若兩個條件都滿足,則共得200元獎金;若兩個條件都不滿足, 則無獎金。
 - (A)三個點數皆為奇數或者皆為偶數
 - (B)三個點數由小排到大為等差數列

若已知有兩顆骰子的點數分別為1、3,且所得獎金為100元,則未知的骰子點數可能為何?

(1) 2 (2) 3 (3) 4 (4) 5 (5) 6 \circ

【109 學測】

答:(1)(2)

解: (1)合(A),不合(B)

- (2)不合(A), 合(B)
- (3)不合(A),不合(B)
- (4)合(A), 合(B)
- (5)不合(A),不合(B)

9. 在坐標平面上,有一通過原點O的直線L,以及一半徑為2、圓心為原點O的圓 Γ 。 P、Q為 Γ 上相異2點,且 \overline{OP} 、 \overline{OQ} 分別與L所夾的銳角皆為30°, 試選出內積 \overline{OP} · \overline{OQ} 之值可能發生的選項:

$$(1) 2\sqrt{3}$$
 $(2) - 2\sqrt{3}$ $(3) 0$ $(4) - 2$ $(5) - 4$

答:(4)(5)

- 10.考慮多項式 $f(x)=3x^4+11x^2-4$,試選出正確的選項:
 - (1) y = f(x)的圖形和 y 軸交點的 y 坐標小於 0 (2) f(x) = 0 有 4 個實根
 - (3) f(x) = 0 至少有一個有理根 (4) f(x) = 0 有一根介於 0 與 1 之間
 - (5) f(x) = 0有一根介於1與2之間。

【109 學測】

【109 學測】

答:(1)(4)

| 解:
$$f(x) = (3x^2 - 1)(x^2 + 4) = (\sqrt{3}x - 1)(\sqrt{3}x + 1)(x^2 + 4)$$

與 y 軸交於(0,-4),兩無理根(實根) $\frac{1}{\sqrt{3}}$,一 $\frac{1}{\sqrt{3}}$,兩虛根±2 i

答:(3)(5)

$$\overline{|p|}$$
: $a = 10^{1.1}$, $b = 10^{2.2}$, $c = 10^{3.3} \Rightarrow ac = b^2$

12.下表是 2011 年至 2018 年某國總就業人口與農業就業人口的部分相關數據,各年度的人口以人數計,有些是以千人計,有些以萬人計,例如 2011 年總就業人口為 1,070.9 萬人,65 歲以上男性農業就業人口為 69.1 千人。試根據表格資料選出正確的選項。

	就 業 人 口			男性農業就業人口按年齡別分			
年 別	總就業人口 (萬人)	農業就業人 口(萬人)	男性農業 就業人口 (千人)	39 歲以下 (千人)	40-49 歲 (千人)	50-64 歲 (千人)	65 歲以上 (千人)
2011年	1,070.9	54.2	386.3	67.6	85.4	164.2	69.1
2012年	1,086.0	54.4	394.9	67.5	87.0	169.5	70.9
2013年	1,096.7	54.4	391.5	66.6	83.9	171.3	69.7
2014年	1,107.9	54.8	391.2	65.8	79.8	173.0	72.6
2015年	1,119.8	55.5	403.1	71.7	76.9	181.3	73.2
2016年	1,126.7	55.7	404.5	77.4	77.4	176.4	73.3
2017年	1,135.2	55.7	405.1	73.9	78.1	178.3	74.8
2018年	1,143.4	56.1	415.1	72.0	78.8	184.9	79.4

- (1)從2013年至2018年,65歲以上的男性農業就業人口逐年遞增
- (2)從 2013 年至 2018 年,50 歲至 64 歲之男性農業就業人口逐年遞增
- (3)上表中,每一年的男性農業就業人口占總就業人口的比率都小於百分之五
- (4)上表中,每一年 50 歲至 64 歲之男性農業就業人口都少於 49 歲以下之男性農業就業人口
- (5)就 65 歲以上之男性農業就業人口而言,2018年比 2011年增加了不到一萬人。

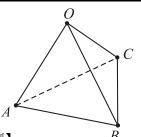
【109 學測】

答:(1)(3)

單:(1)正確

- (2)先增後減再增
- (3)正確
- (4)應為多於
- (5)超過萬人
- 13.如示意圖,四面體 OABC 中, $\triangle OAB$ 和 $\triangle OAC$ 均為正三角形, $\triangle BOC = 30^{\circ}$,試選出正確的選項:

- (2) AOBC 是等腰三角形
- (3) $\triangle OBC$ 的面積大於 $\triangle OAB$ 的面積
- (4) $\angle CAB = 30^{\circ}$
- (5) 平面 OAB 和平面 OAC 的夾角(以銳角計)小於30°。【109學測】



答:(2)(4)

則
$$\overline{BC} = \sqrt{1+1-2\times1\times1\times\cos30^{\circ}} = \sqrt{2-\sqrt{3}}$$
 < 1

則
$$\Delta OBC$$
 面積 = $\frac{1}{2} \times 1^2 \times \sin 30^\circ < \frac{1}{2} \times 1^2 \times \sin 60^\circ = \Delta OAB$ 面積

$$\overrightarrow{m} \angle CAB = \angle COB = 30^{\circ}$$

取
$$OA$$
 中點 $M \Rightarrow \angle CMB > \angle COB = 30^{\circ}$

第貳部分:選填題(佔35分)

A. 網路賣家以200元的成本取得某件模型,並以成本的5倍作為售價,差價即為利潤。但過了一段時間無人問津,因此賣家決定以逐次減少一半利潤的方式調降售價。 若依此方式進行,則調降三次後該模型的售價為______元。 【109學測】

答: 300

$$\widehat{\mathbb{P}}$$
: 200 + $(200 \times 4) \times \left(\frac{1}{2}\right)^3 = 300$

B. 有一按鈕遊戲機,每投幣一枚,可按遊戲機三次。第一次按下會出現黑色或白色的機率 各為 $\frac{1}{2}$;第二或第三次按下,出現與前一次同色的機率為 $\frac{1}{3}$,不同色的機率為 $\frac{2}{3}$ 。 今某甲投幣一枚後,按三次均出現同色的機率為____。(化為最簡分數) 【109 學測】

答: $\frac{1}{0}$

$$\mathbb{R}$$
: $1 \times \left(\frac{1}{3}\right)^2 = \frac{1}{9}$

C. 設 S 為坐標平面上直線 2x + y = 10 被平行線 x - 2y + 15 = 0 與 x - 2y = 0 所截的線段(含端點)。若直線 3x - y = c 與 S 有交點,則 c 的最小值為_____。 【109 學測】

答: -5

D. 平面上有一箏形 ABCD,其中 $\overline{AB} = \overline{BC} = \sqrt{2}$, $\overline{AD} = \overline{CD} = 2$, $\angle BAD = 135$ ° 。 則 $\overline{AC} = \underline{}$ 。 ((化為最簡根式)

 $\overrightarrow{BD} = \sqrt{2 + 4 - 2 \times \sqrt{2} \times 2 \times \cos 135^{\circ}} = \sqrt{10}$ $\cos \angle ABD = \cos \angle CBD = \frac{2 + 10 - 4}{2 \times \sqrt{2} \times \sqrt{10}} = \frac{2}{\sqrt{5}}$ $\overrightarrow{AC} = \left(\overrightarrow{AB} \sin \angle ABD\right) \times 2 = \sqrt{2} \times \frac{1}{\sqrt{5}} \times 2 = \frac{2\sqrt{10}}{5}$

E. 空間中有三點 A(1,7,2)、 B(2,-6,3)、 C(0,-4,1)。 若直線 L 通過 A 點並與直線 BC 相交且垂直,則 L 和直線 BC 的交點坐標為_____。 【109 學測】

答: (-3,-1,-2)

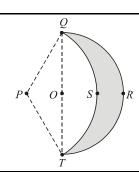
解: $\overline{BC} = (-2,2,-2)$, \overrightarrow{BC} 上動點 $M(2+t,-6-t,3+t) \Rightarrow \overline{AM} = (t+1,-t-13,t+1)$ $\overline{AM} \cdot \overline{BC} = 0 \Rightarrow t = -5$, M = (-3,-1,-2)

F. 坐標平面上有一條拋物線 Γ ,其上有四個點構成等腰梯形,且等腰梯形的對稱軸與 Γ 的對稱軸重合。已知該等腰梯形的上底為4、下底為6、高為14,則 Γ 的焦距為____。(化為最簡分數) 【109 學測】

答: $\frac{5}{56}$

解: $\Rightarrow y^2 = 4cx$ { 過 $(t,2) \Rightarrow 4 = 4c(t)$ 過 $(t+14,3) \Rightarrow 9 = 4c(t+14)$ $\Rightarrow t = \frac{56}{5} \cdot c = \frac{5}{56}$

G. 設計師為天文館設計以不鏽鋼片製成的月亮形狀,其中有一款設計圖如右圖所示:圖中,圓弧QRT 是一個以O點為圓心、 \overline{QT} 為直徑的半圓, $\overline{QT} = 2\sqrt{3}$ 。圓弧QST 的圓心在P點, $\overline{PQ} = \overline{PT} = 2$ 。圓弧QRT 與圓弧QST 所圍出的灰色區域QRTSQ 即為某一天所見的月亮形狀。設此灰色區域的面積為 $a\pi + \sqrt{b}$,其中 π 為圓周率,a為有理數,b為整數,則 a = , (化為最簡分數),b = 。【109 學測】



答:
$$a = \frac{1}{6}$$
 , $b = 3$

解:
$$\overline{QT} = 2\sqrt{3}$$
 、 $\overline{PQ} = \overline{PT} = 2$,故 $\angle QPT = 120^{\circ}$
所求 = $\left(+ \overline{Q}\overline{QT} - R \right) - \left(-\overline{C}\overline{R}\overline{QT} - S \right)$,
$$= \left(\frac{1}{2} \times \pi \times \left(\sqrt{3} \right)^{2} \right) - \left(\frac{1}{3} \pi \times 2^{2} - \frac{1}{2} \times 2^{2} \times \sin 120^{\circ} \right)$$

$$= \frac{1}{6} \pi + \sqrt{3}$$