112 年學科能力第六次模擬測驗數學 A(112-W6)

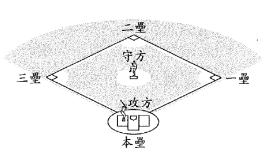
第壹部分:選擇題(占85分)

一、單選題(占 30 分)

- 1. 假設 $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$, $\tan \theta = \frac{1}{3}$,則 $\sin(\frac{23\pi}{2} \theta)$ 之值為下列哪一個選項?
 - (1) $\frac{3}{\sqrt{10}}$ (2) $\frac{2}{\sqrt{10}}$ (3) $\frac{1}{\sqrt{10}}$ (4) $-\frac{1}{\sqrt{10}}$ (5) $-\frac{3}{\sqrt{10}}$
- 2. 已知某科技公司針對某「AI 晶片」進行研發並生產,假設該晶片之利潤函數為 $f(x) = x^3 12x^2 + 36x + 168$ (萬美元),其中 x 為產品數量(百個),其中 x 為正整數。若點 R 為 f(x) 圖形的對稱中心,且圖形在點 R 上的局部特徵直線方程式為 y = px + q 則數對 (p,q) 為下列哪一個選項?
 - $(1) \ (-10,216) \quad (2) \ (-11,224) \quad (3) \ (-12,232) \quad (4) \ (-13,240) \quad (5) \ (-14,248)$
- 3. 已知塞凡堡灣是烏克蘭的海軍基地,其軍艦返航的時間會受到海灣內水深的限制,水的深度夠時,才能依照軍方指示進塞凡堡灣停泊。假設某軍艦的航行官測量海灣內某日 00:00~24:00 內的時間 x(單位:時)與水深 d(單位:公尺)的關係為:

 $d(x) = a\cos(\frac{x}{24}\pi + \frac{\pi}{6}) + b$,a、b 為實數。若當日早上 08:00 時之水深為 14 公尺,中午 12:00 時之水深為 11 公尺,則當日晚上 20:00 海灣內的水深為多少公尺?

- (1) 12.5 公尺 (2) 11 公尺 (3) 9.5 公尺 (4) 8 公尺 (5) 7.5 公尺
- 4. 坐標平面上,若二次函數 f(x) 的圖形其頂點為 R(1,5) ,且 f(x) 的圖形分別與 x=4 、 x=-2交於 $P \cdot Q$ 兩點,已知 f(4)=-4 ,則 $\cos \angle PQR$ 之值為下列哪一個選項?
 - (1) $\frac{4}{5}$ (2) $\frac{5}{7}$ (3) $\frac{8}{9}$ (4) $\frac{9}{11}$ (5) $\frac{12}{13}$
- 5. 假設 $M \cdot N$ 為兩事件,機率 $P(M \cap N) \cdot P(M) \cdot P(M \cup N)$ 三數值成等比數列,且 公比 $> 2 \circ$ 已知 $P(N) = \frac{26}{33}$, $P(M' \cup N') = \frac{31}{33}$,則條件機率 $P(N \mid M)$ 為下列哪一個選項?
 - (1) $\frac{5}{8}$ (2) $\frac{4}{7}$ (3) $\frac{3}{6}$ (4) $\frac{2}{5}$ (5) $\frac{1}{4}$
- 6. 已知棒球比賽是一種攻方將球打到防守方界內無法 防守的地方,攻方球員透過這樣的安打就可以逆時 針推進隊友通過一壘、二壘、三壘及三壘回本壘得 分的運動(如右圖)。假設一場九局的比賽先攻的 A 隊在第二、三局分別攻下 1 分,而後攻的 B 隊在 第二局攻下 2 分,前三局結束兩隊 2:2 戰成平手, 如下表所示:



局數(順序)	1	2	3	4	5	6	7	8	9	最終得分
先攻 A 隊得分情形	0	1	1	?	?	?	?	?	?	5
先攻 B 隊得分情形	0	2	0	?	?	?	?	?	?	3

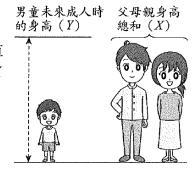
然而<u>小員</u>第四局開始因為有事沒辦法繼續觀賞比賽,只知道完成正規賽九局的最終結果,先攻的 A 隊最終以得分 5:3 擊敗後攻的 B 隊。則從第四局到第九局兩隊的得分情況 共有幾種可能? (1) 288 (2) 336 (3) 468 (4) 552 (5) 624

二、多選題(占 30 分)

7. 關於下列各選項,哪些二階方陣可以便一個四邊形 PQRS 經該方陣線性變換後,其面積

變小? (1)
$$\begin{bmatrix} 7 & 0 \\ 0 & 2 \end{bmatrix}$$
 (2) $\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$ (3) $\begin{bmatrix} 2 & \frac{7}{9} \\ 3 & 1 \end{bmatrix}$

- (4) $\begin{bmatrix} \cos 53^{\circ} & -\sin 53^{\circ} \\ \sin 53^{\circ} & \cos 53^{\circ} \end{bmatrix}$ (5) $\begin{bmatrix} \cos 75^{\circ} & \sin 75^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ} \end{bmatrix}$
- 8. 根據醫院的小兒科醫生指出,只要用對公式,就能預測男童未來成人時的身高。醫生指出男童的身高同時受到父母親的影響,若能知道父親與母親的身高總和(變數 X)就能預測估算出「男童未來成人時的身高」(變數 Y),如右圖。假設 Y 對 X 的迴歸直線方程式為: $y = \frac{x}{2} + \frac{13}{2}$ (公分),其中 x 代表該男童的父親與母親的身高總和。變數 X 與變數 Y 的相關係數 $r_{xy} = 0.8$,且變數 X 的算術平均數為 $\mu_x = 315$ 公分,標準差



- $\sigma_x=5$ 公分。關於上述資訊,試選出正確的選項。(1) Y 對 X 的迴歸直線斜率為 2 (2) Y 的算術平均數 $\mu_y=164$ 公分 (3) Y 的標準差 $\sigma_y=\frac{25}{4}$ (4) Y 對 X 的迴歸直線必過點
- (315, 177) (5) 根據該迴歸直線,當某男童其父親與母親的身高總和為 333 公分時,預測估算該男童未來成人時的身高為 173 公分
- 9. 設空間坐標中 C(4,1,0), D(3,0,2), E(5,-2,-1),O 為原點,則關於下列各向量的性質,試選出正確的選項。 (1) 兩向量 \overrightarrow{CD} 與 \overrightarrow{CE} 互相垂直 (2) $|\overrightarrow{CD} \times \overrightarrow{CE}| = 66$ (3) 兩向量 \overrightarrow{CD} 、 \overrightarrow{CE} 所決定的三角形面積為 $\frac{\sqrt{66}}{2}$ (4) $|(\overrightarrow{OC} \times \overrightarrow{OD}) \cdot \overrightarrow{OE}|$ 之值為 $\sqrt{66}$
 - (5) 三向量 \overrightarrow{OC} 、 \overrightarrow{OD} 、 \overrightarrow{OE} 所決定的四面體體積為 $\frac{\sqrt{66}}{6}$
- 10. 假設觀光局舉辦國外旅遊團參訪高雄「文化&商圈一日遊」,早上先到高雄市文化中心 P 點集合參觀,然後中午有接駁車接送,載至新崛江商圈 Q 點用餐逛街;接著下午再去 駁二藝術特區 R 點拍照留念,最後晚上到六合觀光夜市 S 點大啖美食。己知 $\triangle PSR$ 中 $\overline{PS} = 2$ 公里, $\overline{RS} = 2.4$ 公里, $\angle PSR = 120^\circ$,其中 \overline{SQ} 為 $\angle PSR$ 的內角平分線,如下圖。 關於上述資訊,試選出正確的選項。

(1) \overline{PR} 長度為 $\sqrt{13.76}$ 公里 (2) $\triangle PSR$ 面積為 $\frac{8\sqrt{3}}{5}$ 平方公里 (3) $\triangle PSR$ 的外接圓直徑

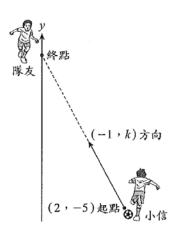
為
$$\sqrt{\frac{13.76}{3}}$$
公里 (4) \overline{SQ} 長度為 $\frac{12}{11}$ 公里 (5) $\triangle PSQ$ 面積為 $\frac{12\sqrt{3}}{11}$ 平方公里

- 11. 已知坐標空間中有直線 $L: \frac{x}{6} = \frac{y}{-2} = \frac{z}{3}$ 、平面 $E_1: 2x y + 2z = 9$ 及平面 $E_2: 2x y + 2z = -6$ 假設直線 L 被 E_1 、 E_2 所截線段的長度為正數 r,試選出下列五條直線分別被 E_1 、 E_2 所 截線段的長度也為 r 的選項。 (1) $L_1: \frac{x}{6} = \frac{y}{-2} = \frac{z}{-3}$ (2) $L_2: \frac{x}{6} = \frac{y-2}{-2} = \frac{z}{3}$
 - (3) $L_3: \frac{x}{-6} = \frac{y}{2} = \frac{z-3}{-3}$ (4) $L_4: \frac{x-12}{12} = \frac{y}{-4} = \frac{z}{6}$ (5) $L_5: \frac{x+6}{6} = \frac{y}{12} = \frac{z}{-4}$
- 12. 假設某企業年終邀請女子天團 New Jeans 尾牙抽獎,摸彩箱中有 Min 金幣 8 枚、Hye 金幣 7 枚、以及 Dan 金幣若干枚,其中抽得每一枚 Min 金幣、Hye 金幣以及 Dan 金幣分別可兌換 60 美元、30 美元以及 50 美元的獎金。已知每一枚金幣的大小、形狀、質感完全相同(只有平面圖案不同),且從摸彩箱中每一枚金幣被抽取出的機率均等,如下圖。假設從摸彩箱中隨機抽出 1 枚金幣可兌換金額的期望值為 47 美元,則根據上述資訊,試選出正確的選項。

(1) 從摸彩箱中任抽一枚金幣為 Min 金幣的機率為 $\frac{4}{9}$ (2) 從摸彩箱中任抽一枚金幣為 Dan 金幣的機率為 $\frac{1}{6}$ (3) 從摸彩箱中任抽一枚金幣其可兌換的獎金小於 40 美元的機率 為 $\frac{7}{18}$ (4) 從摸彩箱中任抽一枚金幣其可兌換的獎金小於 60 美元的機率為 $\frac{3}{5}$ (5) 從摸彩箱中一次任抽兩枚金幣其可兌換的獎金小於 70 美元的機率為 $\frac{21}{190}$

三、選填題(占 25 分)

- 13. 已知有六個數: $(2024)^{0}$ 、 3^{-1} 、 $(\frac{1}{4})^{\frac{1}{2}}$ 、 \log_{2025} 1、 $\frac{2\tan 22.5^{\circ}}{1-\tan^{2}22.5^{\circ}}$ 、 $\sin 180^{\circ}$,以上這六個數的中位數為 p,則 p 值=_____。 (化為最簡分數)
- 14. 已知 $a = \log_{\sqrt{7}} \frac{1}{6}$ 、 $b = \log_7 \frac{1}{42}$ 、c 三數成等差,則實數 $c = _____$ 。
- 15. 小信和隊友一同參加足球比賽,假設比賽的部分畫面為一坐標平面,當小信在起點(2,-5)處將球沿著向量(-1,k)的方向踢出一段 6 單位長的線段後,該線段終點恰好被 y 軸上的隊友順利用腳控制住,如下圖所示。若 k 為正實數,則 k 值=_____。(化為最簡根式)



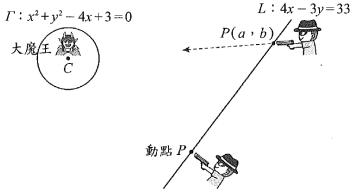
16. 假設函數 $f(x) = 6\sqrt{3}\cos x - 6\sin x - 7$,其中 $0^{\circ} \le x \le 60^{\circ}$ 。已知 f(x) 的最大值為 M,且 $\frac{1}{\sqrt{M+19}} \ge \text{值為} \frac{b-\sqrt{3}}{a}$,其中 $a \cdot b$ 為正整數,則數對 $(a,b) = \underline{\hspace{1cm}}$ 。

17. 已知二階方陣
$$A = \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix}$$
,且 $A^2 - 8A + 7I = O$ (零矩陣),其中 $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 。若 $A^4 - 6A^3 - 10A^2 + 24A - 10I = \alpha A + \beta I$,則實數對 $(\alpha, \beta) = \underline{\qquad}$

第貳部分:混合題或非選擇題(占 15 分)

18-20 題為題組

小明參加一項電競「神槍手」射擊比賽,假設該比賽的畫面為一坐標平面,小明搖桿操縱的神槍手其動點 P(a,b) 的軌跡只能在直線 L:4x-3y=33 上來回移動, $a \times b$ 為未知變數。該比賽神槍手第一關的目標是在移動的過程中必須擊中圓形防護罩 $\Gamma: x^2+y^2-4x+3=0$ 內的圓心 C 大魔王,如下圖所示。已知遊戲的提示是:只有當動點 P 與圓心 C 的距離最近的時候,「神槍手」他發射的子彈才會穿越圓形防護罩 Γ 進而擊中其圓心 C 的大魔王,破關成功,晉級下一關。假設這項比賽子彈的彈道軌跡皆為直線。根據上述,試回答下列問題。

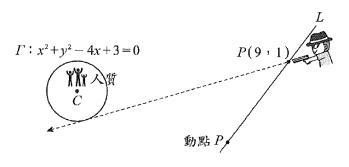


18. 如果欲使「神槍手」擊中圓心 C 的大魔王,就必須使得動點 P 與 C 的距離最接近,則此距離為下列哪個選項?(單選題,3分)

(1) 3 (2)
$$\frac{10}{3}$$
 (3) 4 (4) $\frac{14}{3}$ (5) 5

- 19. 承 18 題,當 P 與圓心 C 的距離最接近時,試推導出此時神槍手的 P(a,b) 的坐標為何? (非選擇題,6 分)
- 20. 假設神槍手第二關的比賽是為了圓形防護罩 Γ 內的人質援救,只要神搶手發射子彈的彈道軌跡直線能與圓形 Γ 相切,就能完成援救任務,贏得最後勝利。已知當神槍手在L上的軌跡P移動到坐標(9,1)時,恰擊出一發子彈,且其彈道軌跡直線與圓形 Γ 相切,如下圖所示。假設該軌跡直線為M: px-24y=q且其斜率為正,試求數對(p,q)。

(非選擇題,6分)



RA4106 112 年學科能力第六次模擬測驗數學 A(112-W6)

參考答案

選擇題:1.(1) 2.(3) 3.(4) 4.(1) 5.(5) 6.(2) 7.(3)(5) 8.(2)(5) 9.(1)(3)

10. (4) **11.** (2)(3)(4) **12.** (4)(5)

選填題:13. $\frac{5}{12}$ 14. -2 15. $2\sqrt{2}$ 16. (6,3) 17. (2,-3)

混合題:18.(5) 19.(6,-3) 20.(7,39)